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Abstract

Many imaging applications require the acquisition of a
time series of images. In conventional Fourier transform-
based imaging methods, each of these images is acquired
independently. As a result, one often has to sacrifice spatial
resolution for temporal resolution. To address this problem,
this paper extends a generalized series imaging method so
that multiple references can be used to achieve high spa-
tiotemporal resolution. Application results are also pre-
sented to illustrate its effectiveness for high-resolution dy-
namic imaging.

1. Introduction

Magnetic resonance imaging (MRI) is usually imple-
mented as a Fourier transform-based technique. As such,
the imaging equation is in the form of a Fourier integral.
For notational convenience, we define here the dynamic
imaging problem as the acquisition of a sequence of ) im-
ages, denoted as I (z), I>(z), - - -, Ig(x), each of which isa
snapshot of a time-varying image function (z, t). Conven-
tionally, () data sets in k-space, di(k),d2(k),---,dg(k),
are acquired independently. Assume that N sample data
points (or encodings) are collected for each of these data
sets at k = nAk, —N/2 < n < N/2. The spatial res-
olution of I,(x) is limited to 1/(NAk), whereas the tem-
poral resolution is NT'r with T'r being the repetition time.
Therefore, high spatial resolution requires a large IV, which
means poor temporal resolution.

To overcome this problem, several data-sharing meth-
ods have been proposed for efficient dynamic imaging
[1-6], two examples of which are the Keyhole and RIGR
(Reduced-encoding Imaging by Generalized-series Recon-
struction) techniques [1-3]. This paper presents an exten-
sion on the RIGR technique so that multiple references can
be used to achieve high spatiotemporal resolution.

2. Generalized SeriesImaging
2.1 Thegeneralized series model

The generalized series (GS) model is a general mathe-
matical model developed for constrained image reconstruc-
tion. In this model, an image function is represented as

Igs(z) = Z cnipn (), @

where o, (x) are basis functions adaptively chosen accord-
ing to the conditions of a particular application problem.
Of special interest to dynamic imaging is the class of basis
functions given by

©On (1) — C(w)ei%rnAlm7 (2)

where the constraint function C(z) is normally chosen to
absorb available a priori information. Many desirable prop-
erties of these basis functions have been discussed in the
context of constrained spectroscopic imaging [7] or image
reconstruction in general [8]. The optimality of these basis
functions can also be justified from the principle of mini-
mum cross-entropy [9]. After the basis functions ¢,,(x) are
chosen, the series coefficients can be determined by solving
a set of linear equations. More specifically, forcing Iys(x)
to be data-consistent yeilds

N/2—1
d(mAk) = > cpdo[(m — n)Ak] (3)

n=—N/2

for —-N/2 < m < N/2 — 1, where dy(k) is the Fourier
transform of C(x). Equation (3) can be solved efficiently
using, for example, the Levinson algorithm [10].

3. The RIGR Technique

The basic generalized series dynamic imaging scheme
(or RIGR) is characterized by the acquisition of one high-
resolution reference image and a series of low-resolution
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dynamic data sets. The number of phase encodings for the
reference image is chosen to satisfy the spatial resolution
requirement, whereas the number of phase encodings for
each dynamic data set is chosen to give the desired temporal
resolution.

Reconstruction of the dynamic images is accomplished
by directly using the generalized series model. Specifically,
let I, () be the high-resolution reference image. The basis
functions are constructed as

On (ZE) — |Iref($)|€i27rnAkw‘ (4)
The series coefficients ¢,, are then determined as described
in Section 2.

A notable limitation with the basic RIGR imaging
method is due to the fact that the GS model has as many
terms as the number of dynamic encodings and, as a result,
dynamic information captured by the GS model often does
not have the same spatial resolution as the reference image.
We demonstrate in this paper that this problem can be effec-
tively overcome if two or multiple references are available.

4. RIGR Imaging with Multiple References

In some dynamic imaging applications, it is possible
to acquire two or more high-resolution images at differ-
ent times of the dynamic imaging process. For exam-
ple, in contrast-enhanced dynamic imaging of breast can-
cer, one can acquire a high-resolution pre-contrast image as
the baseline reference and another high-resolution reference
image when the contrast agent is strongly visible in the im-
age. To reconstruct the dynamic images between the two
references, the TRIGR (Two-reference RIGR) method [11]
uses the difference image between the two references to
shape the basis functions of the GS model. More specifi-
cally, let

C(x) = L et () — Iy e ()] (5)

and
Ady(k) = dg(k) — dy et (k) (6)

Dynamic signal changes between the ¢th data set and the
first reference image are expressed in terms of the GS model

as
M/2—1

Al (z) =C(x) Z cpet2mnAke (7

n=—M/2

where M is the number of dynamic encodings for each dy-
namic data set. The ¢, can then be determined by fitting
the model to the difference data Ad, (k) given in Eq. (6) us-
ing the algorithm discussed in Section 2. After Al (z) is
found, I,(z) is generated by simply adding AI,(z) to the
reference image. That is,

I,(z) = I () + AL(z). (8)

This processing scheme has been demonstrated to be ca-
pable of reconstructing dynamic signal variations at high
resolution when these variations are of an additive type [11],
such as the case with dynamic imaging of injected contrast
agents. For multiplicative types of dynamic signal changes,
as is the case with diffusion-tensor imaging, this scheme
is not effective. To overcome this problem, we have pro-
posed an improved TRIGR reconstruction method, called
TRIGR+. This method creates two sets of basis functions
based on I ref () and I re(), respectively. With these ba-
sis functions, two reconstructions of I,(x) are obtained as

M/j2-1
I g (2) = I et (@) Z c1 e make 9)
n=—M/2
and
M/2-1
Ly(x) = |Lre(@)] D cyne®mdke, (10)
n=—M/2

The series coefficients ¢, ,, and ¢, ,, are determined by fit-
ting Egs. (9) and (10) to d,(mAk) = d,(mAk)w,,, re-
spectively, where w,, is chosen according to w,, = 0.54 +
0.46 cos(2mrm /M), for —M /2 < m < M/2. This filter
function serves two purposes: (a) to reduce ringing artifacts
due to model truncation, and (b) to create a residual signal
Ady(mAk) = dg(mAk)(1 — w,,), which can be used to
pick up some additional dynamic signal changes missed by
both I, ,(z) and I5 4 ().

Note that for a large M, both I, ,(z) and Io 4 () will
reconstruct I,(z) accurately. This is not the case when
M is small. In fact, in this case, I; ,(z) will be different
from I, ,(z) although they are both data-consistent. One
can argue that Iy (x) — I 4(z) will have large values in
areas where dynamic signal changes are not well repro-
duced by I, ,(z) and/or I, ,(z). Therefore, we can use
|[12,4(x) — I1 4(z)| to construct another set of basis func-
tions to capture these dynamic signal changes. Specifically,
let

M/2-1

Aly(x) = [Ioy(x) = Ig(@)] Y cpe®3h (11)
n=—M/2

Fitting this model to the residual signal Ad,(mAk) ob-
tained above will not only pick up additional dynamic signal
changes but also assure the final reconstruction to be con-
sistent with d,(mAk) for —M /2 < m < M /2.
Specifically, combining I (), I ,(z) and Al,(x) as
follows will yield a data-consistent reconstruction for I, (x):

Ii(7) = agli 4(7) + (1 — ag)2,4(2) + AL (z).  (12)

The weighting coefficient a,, can be determined in a variety
of ways. For example, assume that dq ref(z) and ds ref()



are acquired at ¢ = ¢,  and ¢ r, respectively, and that d, (k)
is collected at ¢ = t, such that ¢; , < ¢, < ta,. We may
set ag = (tar — tq)/(t2r — t1,r). This scheme is particu-
larly suitable for the case in which dynamic signal changes
are roughly a linear function of time. For other models of
dynamic signal changes, the «, can be chosen in a more op-
timal fashion. Nevertheless, we have found that the simple
scheme works reasonably well for a number of problems,
including diffusion-tensor imaging and cardiac imaging.

5. Result

Figure 1 illustrates the performance of the proposed
method. In this experiment, dynamic signal changes
were introduced with variable diffusion weightings using
a diffusion-weighted imaging sequence. The images in the
top row were reconstructed from 128 phase encodings (each
with 128 points) using the conventional Fourier method.
The diffusion coefficient map was obtained by fitting a sin-
gle exponential curve through the image sequence pixel by
pixel. When the number of phase encodings is reduced to
8, the Fourier images in the second row show significant
blurring as expected. The RIGR method using the same
data in the second row plus a high-resolution reference at
the beginning of the sequence produced the images in third
row. As can be seen, although the diffusion-weighted im-
ages appear to be high resolution, the corresponding dif-
fusion map is a low-resolution one, which means that the
dynamic signal changes were not produced in high resolu-
tion in the diffusion-weighted images. Using the proposed
method and the same data in the second row plus two high-
resolution references, one at the beginning and the other at
the end of the sequence, we obtained the images in the last
row. These images demonstrate that the method is able to
capture dynamic signal changes at high resolution with only
a small number of encodings.

6. Conclusion

An improved method for generalized series imaging has
been discussed in this paper. This method enables high-
resolution dynamic images to be reconstructed from a re-
duced number of phase encodings plus two or more refer-
ences. We have applied the technique to several applications
which demonstrate that a 4 to 8 fold improvement in imag-
ing efficiency over the traditional Fourier imaging method
can be obtained without a significant loss of image qual-
ity. This technique should prove useful for improving tem-
poral resolution for various dynamic imaging experiments,
such as dynamic study of injected contrast agents, diffusion-
tensor imaging, and cardiac imaging.
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Figure 1. Diffusion-weighted images reconstructed using: (a) the Fourier method with 128 x 128
encodings; (b) the Fourier method with 8 x 128 encodings; (c) the RIGR method using the same
data in (b) plus a high-resolution reference at the beginning of the sequence; and (d) the TRIGR+
method using the same data in (b) plus two high-resolution references, one at the beginning and the
other at the end of the sequence. The diffusion maps were obtained by fitting the diffusion curve
pixel-by-pixel through the corresponding image sequences in (a)-(d), respectively.
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